

KLINGER[®] top-sil ML1 - unique multi-layer material concept - a milestone for fiber-reinforced gaskets.

This gasket material makes use of the effects achieved by combining synthetic fibers and different elastomers into a special multi-layer sealing matrix. The result: An extended service life and improved flexibility at higher temperatures. Highly versatile, it can be utilized for a wide range of media and applications, including oils, water, steam, gases, salt solutions, fuels, alcohols, moderate organic and inorganic acids, hydrocarbons, lubricants and refrigerants.

Basis composition	Synthetic fibers and elastomers, bonded in a multi-layer structure.				
Color	Yellow				
Certificates	BAM-tested, DIN-DVGW, DNV GL approval, TA-Luft (Clean air), Fire-safe acc. to DIN EN ISO 10497				

Sheet size	2000 x 1500 mm					
Thickness	0.8 mm, 1.0 mm, 1.5 mm, 2.0 mm, 3.0 mm					
Tolerances						
Thickness according to DIN 28091-1						
Length:	± 50 mm					
	± 50 mm					

Industry

General industry / Chemical / Oil & Gas / Energy / Infrastructure / Pulp & Paper / Marine / Automotive / Food & Beverage

TECHNICAL DATA - Typical values for a thickness of 2.0 mm

Compressibility	ASTM F 36 J	%	9
Recovery	ASTM F 36 J	%	50
Stress relaxation DIN 52913	50 MPa, 16 h/175°C	MPa	34
	50 MPa, 16 h/300°C	MPa	28
Stress relaxation BS 7531	40 MPa, 16 h/300°C	MPa	29
KLINGER cold/hot compression	thickness decrease at 23°C	%	8
50 MPa	thickness decrease at 300°C	%	15
Tightness	DIN 28090-2	mg/(s x m)	0.05
Specific leakrate	VDI 2440	mbar x l/(s x m)	3.51E-06
Thickness increase after fluid	oil IRM 903: 5 h/150°C	%	4
immersion ASTM F 146	fuel B: 5 h/23°C	%	8
Density		g/cm ³	1.7
Average surface resistance	ρΟ	Ω	9.3x10E12
Average specific volume resistance	ρD	Ω cm	3.8x10E12
Average dielectric strength	Ed	kV/mm	18.8
Average power factor	50 Hz	tan δ	0.048
Average dielectric coefficient	50 Hz	εr	7.3
Thermal conductivity	λ	W/mK	0.36
Classification acc. to BS 7531:2006	Grade AX		
ASME-Code sealing factors		· · · · · · · · · · · · · · · · · · ·	
for gasket thickness 2.0 mm	tightness class 0.1mg/s x m	MPa	y 15
			m 2.2

1.00E-03) 1.002 . 1.002-04

1.00E-07

0

P-T diagram - thickness 2.0 mm The area of the P-T diagram (1) In area one, the gasket material is normally 100 suitable subject to chemical compatibility. 80 (2) In area two, the gasket material may be suitable but a technical evaluation is recommended. 60 bar (3) In area three, do not install the gasket without a <u>o</u> 40 technical evaluation. (1) Always refer to the chemical resistance of the 20 gasket to the media. 0 100 -200 -100 Ó 200 300 400 Temperature (°C) Sigma BO Maximum surface pressure in operating 260 conditions of Sigma BO 240 —1 mm —2 mm —3 mm 220 This diagram shows the maximum surface 200 180 pressure in MPa with which the sealing material 160 may be loaded, depending on the operating δ_{BO} (MPa) 140 temperature. The characteristic curves apply to 120 100 the specified sealing thicknesses. In contrast 80 to Qsmax according to EN 13555, the surface 60 40 pressures specified here are based on a 20 maximum permissible reduction in thickness. 0 275 50 75 100 125 150 175 200 225 250 300 25 Temperature [°C] **Tightness performance** The tightness performance graph 1.00E+01 The graph shows the required stress at Ê1.00E+00 assembling to seal a certain tightness class. × 1.00E-01 p = 40 barT = 23 °C The determination of the graph is based on

Chemical resistance chart

100

Simplified overview of the chemical resistance depending on the most important groups of raw materials:

80

60

Surface pressure (MPa)

KLINGER® top-sil ML1					A: small or no attack		B: weak till moderate attack			C: strong attack	
Paraffinic hydrocarbon	Motor fuel	Aromates	Chlorinated hydrocarbon fluids	Motor oil	Mineral lubricants	Alcohol	Ketone	Ester	Water	Acid (diluted)	Base (diluted)
Α	В	С	С	Α	В	Α	С	С	Α	Α	Α

EN13555 test procedure which applies 40bar

tightness with raising gasket stress.

Helium at room temperature. The sloping curve indicates the ability of the gasket to increase

For more information on chemical resistance please contact us

20

40

All information is based on years of experience in production and operation of sealing elements. However, in view of the wide variety of possible installation and operating conditions one cannot draw final conclusions in all application cases regarding the behaviour in gasket joint. The data may not, therefore, be used to support any warranty claims. This edition cancels all previous issues. Subject to change without notice.

Certified acc. to DIN EN ISO 9001:2015 Subject to technical alterations. Status: April 2020

KLINGER Limited

AUSTRALIA

Western Australia - Head Office 38 McDowell Street Welshpool WA 6106

Queensland Unit 3, 5-7 Roseanna Street Gladstone QLD 4680

> Tel: 1300 798 279 (calls within Australia)

Tel: +61 8 92511688 (calls outside Australia)

NEW ZEALAND Tel: +64 272 735 045

SINGAPORE

105 Cecil Street #07-01, The Octagon Singapore 069534 Tel: +65 6827 9045

KLINGER Thailand

501/2 Moo 2, Tambol Mabyangporn Amphur Ruak Daeng Rayong 21140 Thailand Tel: +66 3306 0154

klinger.com.au